Precision/Recall/Accuracy
機械学習でよく出てきてよく混乱するアレです。
-
| Positive (Actual) | Negative (Actual)
———————–|———————-|———————–
Positive (Prediction) | True Positive (TP) | False Positive (FP)
Negative (Prediction) | False Negative (FN) | True Negative (TN)
-
Precision (適合率、精度): Of examples recognized as positive, what percentages are actually positive? $$ {\rm Precision} = \frac{\rm TP}{{\rm TP} + {\rm FP}} $$
-
Recall (再現率): What percentages of actual positives are correctly recognized as positive? $$ {\rm Recall} = \frac{\rm TP}{{\rm TP} + {\rm FN}} $$
-
Accuracy (正解率): $$ {\rm Accuracy} = \frac{\rm TP}{{\rm TP} + {\rm TN}} $$