Precision/Recall/Accuracy
機械学習でよく出てきてよく混乱するアレです。
- 
| Positive (Actual) | Negative (Actual)
———————–|———————-|———————–
Positive (Prediction) | True Positive (TP)   | False Positive (FP)
Negative (Prediction) | False Negative (FN)  | True Negative (TN)
- 
Precision (適合率、精度): Of examples recognized as positive, what percentages are actually positive? $$ {\rm Precision} = \frac{\rm TP}{{\rm TP} + {\rm FP}} $$ 
- 
Recall (再現率): What percentages of actual positives are correctly recognized as positive? $$ {\rm Recall} = \frac{\rm TP}{{\rm TP} + {\rm FN}} $$ 
- 
Accuracy (正解率): $$ {\rm Accuracy} = \frac{\rm TP}{{\rm TP} + {\rm TN}} $$